Cover image for Practical RF circuit design for modern wireless systems
Title:
Practical RF circuit design for modern wireless systems
Author:
Besser, Les.
Personal Author:
Publication Information:
Boston, MA : Artech House, [2003]

©2003
Physical Description:
2 volumes : illustrations ; 26 cm.
Language:
English
Contents:
v. 1. Passive circuits and systems -- v. 2. Active circuits and systems.
Added Author:
Added Title:
Passive circuits and systems.
ISBN:
9781580535212

9781580535229
Format :
Book

Available:*

Library
Call Number
Material Type
Home Location
Status
Item Holds
Searching...
TK6560 .B47 2003 Adult Non-Fiction Non-Fiction Area
Searching...

On Order

Summary

Summary

In today's globally competitive wireless industry, the design-to-production cycle is critically important. Circuit and system engineers must be able to develop robust designs that can be mass produced. To accomplish this, engineers need to learn the requirements of, and solutions leading to, optimum performance. The first of a two-volume set, this text takes a practical approach to RF (radio frequency) circuit design, offering an understanding of the fundamental concepts that practitioners need to know and use for their work in this industry. It seeks to lay the groundwork for efficient passive circuit design.


Author Notes

Rowan Gilmore holds a D.Sc. and MSEE degrees from Washington University in St. Louis, and a B.E. degree in electrical engineering from the University of Queensland, Brisbane, Australia.

Mr. Gilmore is an experienced consulting engineer who introduced the world’s first commercial harmonic-balance CAD simulator while Vice-President Engineering at Compact Software. He has held numerous design and management posts in industry, including Central Microwave, Schlumberger, Telstra and SITA. A senior member of the IEEE. He has nearly fifteen years of teaching experience with Besser Associates and CEI Europe.

050


Table of Contents

Prefacep. xv
Acknowledgmentsp. xix
1 Introductionp. 1
1.1 Defining RFp. 1
1.2 Circuits and systemsp. 3
1.2.1 System specificationp. 3
1.2.2 System designp. 4
1.2.3 Circuit designp. 4
1.3 Wirelessp. 5
1.4 Conclusionp. 6
Referencep. 7
2 RF circuit fundamentalsp. 9
2.1 Introductionp. 9
2.2 The decibel scalep. 9
2.2.1 Illustrative example: decibel calculationsp. 12
2.2.2 Absolute power level referencep. 13
2.2.3 Illustrative exercise: power conversionsp. 14
2.3 Complex number reviewp. 15
2.4 Normalizationp. 17
2.5 R-L-C voltage-current relationshipsp. 18
2.6 Complex impedance and admittance systemsp. 20
2.7 Unloaded and loaded Q definitionsp. 22
2.8 Complex series impedance of RF componentsp. 23
2.9 Complex parallel admittance of RF componentsp. 24
2.9.1 Illustrative exercise: computing elements from admittance specificationsp. 27
2.10 Series and parallel L-C resonant circuitsp. 27
2.11 Series and parallel conversions of lumped R-L-C networksp. 30
2.11.1 Illustrative example: converting a series parallel equivalencep. 32
2.12 One-port and multiport networksp. 33
2.13 Importance of power transfer when cascading system componentsp. 35
2.14 Importance of impedance matchingp. 36
2.15 RF components and related issuesp. 37
2.15.1 Parasitic inductances and capacitancesp. 38
2.15.2 Limited range of practical element valuesp. 38
2.15.3 Measurement and test-fixture considerationsp. 39
2.15.4 Grounding and coupling effectsp. 39
2.16 Lumped elements versus transmission linesp. 40
2.16.1 Illustrative example: fractional wavelength calculationsp. 42
2.16.2 Two-conductor transmission linesp. 43
2.16.3 Transmission line characterizationsp. 46
2.16.4 Various TEM transmission line configurationsp. 48
2.16.5 Reflected waves on transmission linesp. 51
2.16.6 Transmission line stubsp. 54
2.16.7 Illustrative example: open-circuited parallel stub computationp. 57
2.16.8 Directional couplersp. 58
2.17 Circuit parameters using wave relationsp. 59
2.17.1 Reflection coefficient definitionsp. 59
2.17.2 Return lossp. 62
2.17.3 Voltage standing wave ratiop. 63
2.17.4 Mismatch lossp. 64
2.17.5 Difference between mismatch loss and return lossp. 65
2.18 Impedance transformation and matchingp. 65
2.19 Single-ended versus differential circuitsp. 66
2.19.1 Single-ended RF circuitsp. 67
2.19.2 Differential RF circuitsp. 68
2.19.3 Electromagnetic compatibility and interferencep. 72
2.20 Time domain versus frequency domainp. 73
2.20.1 Periodic waveform definitionsp. 73
2.20.2 Jitterp. 76
2.20.3 Eye diagramp. 77
2.21 Summaryp. 78
Referencesp. 79
Selected bibliographyp. 80
3 The radio as typical RF systemp. 81
3.1 Receiver architecturep. 81
3.1.1 The simple detector receiverp. 81
3.1.2 The direct conversion (homodyne) receiverp. 83
3.1.3 The superheterodyne receiver--analog systemp. 85
3.1.4 The superheterodyne receiver--digital systemp. 88
3.2 Receiver characterizationp. 94
3.2.1 The communications channelp. 94
3.2.2 Receiver noisep. 95
3.2.3 Receiver sensitivityp. 98
3.2.4 System nonlinearityp. 100
3.2.5 Receiver dynamic rangep. 109
3.2.6 Receiver selectivityp. 113
3.2.7 Receiver frequency responsep. 125
3.3 Analysis of a CDMA receiver handsetp. 125
3.3.1 Receiver component specificationp. 130
3.3.2 Receiver responsep. 135
Problemsp. 144
Referencesp. 146
4 The Smith chart and S-parametersp. 147
4.1 Introductionp. 147
4.2 The Smith chart: a polar plot of reflection coefficientp. 148
4.2.1 Impedance manipulations on the Smith chartp. 151
4.2.2 Adding series inductors on the Smith chartp. 151
4.2.3 Adding series capacitors on the Smith chartp. 152
4.2.4 Adding series resistors on the Smith chartp. 152
4.3 The admittance Smith chartp. 154
4.3.1 Adding parallel capacitors on the admittance Smith chartp. 156
4.3.2 Adding parallel inductors on the admittance Smith chartp. 158
4.3.3 Adding parallel resistors on the admittance Smith chartp. 159
4.4 Circuit manipulations using series and parallel componentsp. 159
4.5 The immitance (Z-Y) Smith chartp. 160
4.5.1 Series R-L-C contours on the immitance Smith chartp. 161
4.5.2 Shunt R-L-C contours on the immitance Smith chartp. 162
4.5.3 Lowpass L-C transformersp. 162
4.5.4 Highpass L-C transformersp. 163
4.5.5 Bandpass transformer sectionsp. 163
4.5.6 Illustrative exercise: series-to-parallel circuit conversionsp. 164
4.5.7 Illustrative exercise: impedance transformationsp. 165
4.6 Constant Q curves on the Smith chartp. 169
4.7 Negative reactive elementsp. 169
4.7.1 Illustrative example: removing the effect of parasitic inductancep. 170
4.8 Negative resistance and the extended Smith chartp. 171
4.9 Transmission line manipulations on the Smith chartp. 172
4.9.1 Cascade transmission linesp. 172
4.9.2 Parallel transmission line stubsp. 175
4.9.3 Important points to remember about transmission linesp. 176
4.9.4 Illustrative example: impedance transformation with transmission line and lumped elementsp. 177
4.9.5 Illustrative example: computing transmission line lengths with the Smith chartp. 178
4.9.6 Illustrative example: troubleshooting a matching network with the Smith chartp. 179
4.10 Matrix descriptions of networksp. 180
4.11 The scattering (S) matrixp. 183
4.12 The network analyzerp. 185
4.13 S-parameter measurementsp. 188
4.13.1 Measurement errorsp. 188
4.13.2 One-port calibrationp. 190
4.13.3 Two-port calibrationsp. 191
4.13.4 Time-domain reflectometryp. 192
4.14 Two-port gain expressions in terms of S-parametersp. 193
4.14.1 Illustrative exercise: transducer gain versus insertion lossp. 195
4.14.2 Illustrative exercise: transistor gain calculations--1p. 196
4.14.3 Illustrative exercise: transistor gain calculations--2p. 198
4.15 Cascading two-ports with S-parametersp. 200
4.15.1 Illustrative exercise: performance of two cascaded filtersp. 201
4.15.2 Mismatch errorp. 203
4.15.3 The cascadable scattering transfer matrixp. 204
4.16 Multiport S-parametersp. 205
4.17 Generalized two-port S-parametersp. 206
4.18 Mixed-mode S-parametersp. 209
4.18.1 Standard S-parameter to mixed-mode S-parameter transformationsp. 213
4.18.2 Illustrative example: characterization of a SAW filterp. 215
4.19 Summaryp. 217
Referencesp. 218
Selected bibliographyp. 218
5 Impedance matching techniquesp. 221
5.1 The impedance matchp. 222
5.2 Transmission zero definitionsp. 225
5.2.1 Illustrative exercise: determine the order of L-C networksp. 228
5.3 Impedance matching into complex terminationp. 232
5.3.1 Illustrative example: matching a 50-[Omega] source to a complex loadp. 233
5.4 Impedance matching with uneven resistive terminationsp. 236
5.5 The Q matching technique with L-C sectionsp. 239
5.5.1 Illustrative example: impedance matching of two resistive terminationsp. 241
5.5.2 Bandwidth of L-C matching sectionsp. 244
5.6 Impedance matching of complex terminationsp. 247
5.6.1 Absorbing the parasitics of the terminationsp. 247
5.6.2 Resonating excessive parasitic inductance or capacitancep. 248
5.6.3 Illustrative exercise: impedance matching complex terminations with the Smith chartp. 251
5.7 Multisection impedance matching to increase bandwidthp. 254
5.7.1 Illustrative exercise: two-section impedance match for wider bandwidthp. 257
5.8 Multisection impedance matching to decrease bandwidthp. 260
5.8.1 Illustrative exercise: two-section impedance match for narrow bandwidthp. 262
5.9 Impedance matching with transmission line componentsp. 264
5.9.1 Impedance matching with a single cascade transmission linep. 264
5.9.2 Illustrative exercise: impedance matching with a cascade transmission linep. 266
5.10 Impedance matching with transmission lines on the Smith chartp. 267
5.10.1 Illustrative exercise: impedance matching with a cascade transmission linep. 269
5.10.2 Parallel stub manipulations on the Smith chartp. 271
5.11 Impedance matching of balanced circuitsp. 272
5.11.1 Illustrative exercise: impedance matching of differential amplifiersp. 272
5.12 Answers to illustrative exercise of Section 5.2.1 (circuit 4)p. 273
5.13 Summaryp. 275
Referencesp. 276
Selected bibliographyp. 276
6 CAE/CAD of linear RF/MW circuitsp. 277
6.1 Introductionp. 277
6.2 Historical reviewp. 279
6.3 Analysis versus synthesis and optimizationp. 281
6.4 Circuit simulation techniquesp. 282
6.4.1 DC and transient analysisp. 282
6.4.2 AC steady-state circuit analysisp. 283
6.5 Impedance mappingp. 284
6.6 Component tuningp. 286
6.7 Circuit optimizationp. 286
6.7.1 Error function definitionsp. 289
6.7.2 Illustrative exercise: weighting factor determinationsp. 290
6.7.3 Component sensitivitiesp. 293
6.7.4 Constrained versus unconstrained optimizationp. 294
6.7.5 Search techniquesp. 294
6.7.6 Illustrative exercise: matching network optimizationp. 295
6.8 Statistical design techniquesp. 298
6.8.1 Yield-oriented designp. 299
6.8.2 Component tolerance distributions--probability density functionsp. 301
6.8.3 Statistical sensitivitiesp. 303
6.8.4 Illustrative exercise: design centering of a 500-MHz lowpass filterp. 307
6.9 Circuit synthesisp. 314
6.9.1 Parasitic absorptionp. 316
6.9.2 Ripple, slope, and minimum insertion loss specificationsp. 317
6.9.3 Illustrative example: matching network synthesisp. 318
6.10 Electromagnetic field simulationp. 321
6.10.1 Categories by geometriesp. 322
6.10.2 Illustrative example: layout and cosimulation of a 6-GHz Wilkinson power dividerp. 324
6.11 CAD program descriptionsp. 327
6.11.1 Agilent Advanced Design Systemp. 327
6.11.2 Ansoft Designerp. 329
6.11.3 AWR Microwave Officep. 331
6.11.4 Eagleware Genesysp. 333
6.12 Summaryp. 334
Referencesp. 334
7 Passive component modelsp. 337
7.1 Introductionp. 337
7.2 Resistance, self-inductance, and stray capacitance of conductorsp. 339
7.2.1 Resistance changes of conductors at RFp. 339
7.2.2 RF considerations of resistor typesp. 341
7.2.3 Inductance of a straight wire (far from ground and shielding)p. 342
7.2.4 Parallel-plate and edge-coupled capacitancep. 344
7.3 Frequency response of physical resistorsp. 346
7.3.1 Fitting a model to measured resistor datap. 348
7.4 Modeling physical inductorsp. 350
7.4.1 Inductor self-capacitance and loss resistancesp. 353
7.4.2 Planar printed inductorsp. 353
7.4.3 Effective inductance calculationsp. 354
7.4.4 Q-factor calculationp. 355
7.4.5 Multilayer inductorsp. 357
7.4.6 Inductors with magnetic corep. 360
7.5 Ferrite beadsp. 362
7.6 Physical capacitor modelsp. 364
7.6.1 Interdigital capacitorsp. 367
7.6.2 Illustrative example of effective capacitance calculationsp. 367
7.6.3 Secondary resonances in multifinger capacitorsp. 370
7.7 Via hole modelsp. 372
7.7.1 Grounding-path inductance effectsp. 375
7.8 Planar transmission lines for RF/MW applicationsp. 377
7.8.1 Comparison of planar transmission line formsp. 378
7.8.2 Coupled transmission linesp. 381
7.8.3 Transmission line discontinuitiesp. 383
7.9 Dielectric board materialsp. 387
7.10 Transformersp. 389
7.10.1 Transformer equivalent circuit with conventional windingsp. 390
7.10.2 Balunsp. 392
7.11 Crystal resonators and modelsp. 395
7.11.1 Crystal orientationp. 396
7.11.2 Doubly rotated cutsp. 397
7.11.3 Crystal resonator equivalent circuitp. 397
7.11.4 Applicationsp. 403
7.12 Surface acoustic wave resonatorsp. 403
7.13 Dielectric resonatorsp. 405
7.14 Component measurements and modelingp. 408
7.15 Summaryp. 410
Referencesp. 411
8 Filters and resonant circuitsp. 415
8.1 Introductionp. 415
8.2 Filter specificationsp. 417
8.3 Various filter typesp. 421
8.4 Low-frequency versus RF/MW filtersp. 423
8.4.1 Baseband filtersp. 423
8.4.2 RF filtersp. 429
8.5 Comparison of filter responsesp. 441
8.6 Multiplexer filtersp. 442
8.7 Filter design outlinep. 444
8.7.1 Lowpass filter design using filter tablesp. 444
8.7.2 Illustrative exercise: 400-MHz Chebyshev filter design with lumped componentsp. 451
8.8 Transmission line (distributed-element) filtersp. 457
8.8.1 Illustrative example: converting a lumped filter to distributed type using Richard's transformationp. 458
8.9 Network transformationsp. 460
8.9.1 Transformations to change the filter's responsep. 461
8.9.2 Transformations to change termination ratio or element typep. 462
8.9.3 Transformations to change termination ratios and/or circuit topologies of transmission line networksp. 468
8.9.4 Transformations to change element valuesp. 474
8.10 L-C resonant circuits in filter designp. 475
8.10.1 Illustrative example: bandpass resonant circuit designp. 476
8.10.2 Illustrative exercise: synthesis and transformations of a capacitively coupled resonator filterp. 482
8.11 Other forms of resonatorsp. 484
8.11.1 Illustrative example: coupled transmission line filter synthesis using CADp. 485
8.11.2 Dielectric resonatorsp. 488
8.11.3 Crystal resonatorsp. 488
8.12 Summaryp. 489
Referencesp. 490
Selected bibilographyp. 491
9 Similarities and differences of RF and high-speed digital designsp. 493
9.1 Historical perspective of analog RF and digital designsp. 493
9.2 Time-domain and voltage-current parameters (transition times, delays, skew, and signal levels)p. 496
9.3 Crosstalk versus couplingp. 500
9.4 R-L-C models for digital applicationsp. 503
9.4.1 Resistorsp. 503
9.4.2 Inductorsp. 505
9.4.3 Capacitorsp. 507
9.5 Parasitics of passive interconnects, loading, vias, and lossesp. 509
9.6 Frequency-domain versus time-domain considerationsp. 513
9.6.1 When frequency domain is essential: clock networksp. 513
9.6.2 When frequency domain is useful: power distributionp. 514
9.7 Measurement and simulation considerationsp. 516
Referencesp. 520
Selected bibliographyp. 521
Appendixp. 523
Summary of Basic Formulas - 1p. 523
Summary of Basic Formulas - 2p. 525
About the Authorsp. 527
Indexp. 529