Cover image for Fundamentals of nuclear science and engineering
Title:
Fundamentals of nuclear science and engineering
Author:
Shultis, J. Kenneth.
Personal Author:
Publication Information:
New York : Marcel Dekker, [2002]

©2002
Physical Description:
xii, 506 pages : illustrations ; 26 cm
Language:
English
Subject Term:
Added Author:
ISBN:
9780824708344
Format :
Book

Available:*

Library
Call Number
Material Type
Home Location
Status
Item Holds
Searching...
TK9145 .S474 2002 Adult Non-Fiction Non-Fiction Area
Searching...

On Order

Summary

Summary

Fundamentals of Nuclear Science and Engineering provides an ideal introduction to the subject. The first half of the text reviews the important results of "modern" physics and introduces the fundamentals of nuclear science. The second half introduces the theory of nuclear reactors and its application in electrical power production and propulsion. It also surveys many other applications of nuclear technology encountered in space research, industry, and medicine. Each chapter contains extensive problem sets, and appendices at the end of the text furnish large amounts of practical data that enable students to perform a wealth of calculations.

Among the myriad concepts, principles, and applications addressed in this text, Fundamentals of Nuclear Science and Engineering

Describes sources of radiation, radiation interactions, and the results of such interactions
Summarizes developments in the creation of atomic and nuclear models
Develops the kinematics and energetics of nuclear reactions and radioactivity
Identifies and assesses biological risks associated with ionizing radiation
Presents the theory of nuclear reactors and their dynamic behavior
Discusses the design and characteristics of modern nuclear power reactors
Summarizes the nuclear fuel cycle and radioactive waste management
Describes methods for directly converting nuclear energy into electricity
Presents an overview of nuclear propulsion for ships and space crafts
Explores the use of nuclear techniques in medical therapy and diagnosis
Covers basic concepts in theory of special relativity, wave-particle duality, and quantum mechanics

Fundamentals of Nuclear Science and Engineering builds the background students embarking on the study of nuclear engineering and technology need to understand and quantify nuclear phenomena and to move forward into higher-level studies.


Author Notes

J. Kenneth Shultis is Professor in the Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan.


Table of Contents

1 Fundamental Conceptsp. 1
1.1 Modern Unitsp. 1
1.1.1 Special Nuclear Unitsp. 4
1.1.2 Physical Constantsp. 5
1.2 The Atomp. 5
1.2.1 Atomic and Nuclear Nomenclaturep. 6
1.2.2 Atomic and Molecular Weightsp. 8
1.2.3 Avogadro's Numberp. 9
1.2.4 Mass of an Atomp. 10
1.2.5 Atomic Number Densityp. 10
1.2.6 Size of an Atomp. 11
1.2.7 Atomic and Isotopic Abundancesp. 12
1.2.8 Nuclear Dimensionsp. 12
1.3 Chart of the Nuclidesp. 13
1.3.1 Other Sources of Atomic/Nuclear Informationp. 13
2 Modern Physics Conceptsp. 16
2.1 The Special Theory of Relativityp. 16
2.1.1 Principle of Relativityp. 18
2.1.2 Results of the Special Theory of Relativityp. 19
2.2 Radiation as Waves and Particlesp. 22
2.2.1 The Photoelectric Effectp. 23
2.2.2 Compton Scatteringp. 25
2.2.3 Electromagnetic Radiation: Wave-Particle Dualityp. 27
2.2.4 Electron Scatteringp. 28
2.2.5 Wave-Particle Dualityp. 29
2.3 Quantum Mechanicsp. 30
2.3.1 Schrodinger's Wave Equationp. 30
2.3.2 The Wave Functionp. 32
2.3.3 The Uncertainty Principlep. 33
2.3.4 Success of Quantum Mechanicsp. 34
2.4 Addendum 1: Derivation of Some Special Relativity Resultsp. 34
2.4.1 Time Dilationp. 34
2.4.2 Length Contractionp. 35
2.4.3 Mass Increasep. 36
2.5 Addendum 2: Solutions to Schrodinger's Wave Equationp. 37
2.5.1 The Particle in a Boxp. 37
2.5.2 The Hydrogen Atomp. 39
2.5.3 Energy Levels for Multielectron Atomsp. 43
3 Atomic/Nuclear Modelsp. 48
3.1 Development of the Modern Atom Modelp. 48
3.1.1 Discovery of Radioactivityp. 48
3.1.2 Thomson's Atomic Model: The Plum Pudding Modelp. 50
3.1.3 The Rutherford Atomic Modelp. 51
3.1.4 The Bohr Atomic Modelp. 52
3.1.5 Extension of the Bohr Theory: Elliptic Orbitsp. 55
3.1.6 The Quantum Mechanical Model of the Atomp. 56
3.2 Models of the Nucleusp. 57
3.2.1 Fundamental Properties of the Nucleusp. 57
3.2.2 The Proton-Electron Modelp. 59
3.2.3 The Proton-Neutron Modelp. 60
3.2.4 Stability of Nucleip. 62
3.2.5 The Liquid Drop Model of the Nucleusp. 64
3.2.6 The Nuclear Shell Modelp. 68
3.2.7 Other Nuclear Modelsp. 68
4 Nuclear Energeticsp. 71
4.1 Binding Energyp. 72
4.1.1 Nuclear and Atomic Massesp. 72
4.1.2 Binding Energy of the Nucleusp. 73
4.1.3 Average Nuclear Binding Energiesp. 74
4.2 Nucleon Separation Energyp. 76
4.3 Nuclear Reactionsp. 78
4.4 Examples of Binary Nuclear Reactionsp. 78
4.4.1 Multiple Reaction Outcomesp. 79
4.5 Q-Value for a Reactionp. 80
4.5.1 Binary Reactionsp. 81
4.5.2 Radioactive Decay Reactionsp. 81
4.6 Conservation of Charge and the Calculation of Q-Valuesp. 81
4.6.1 Special Case for Changes in the Proton Numberp. 82
4.7 Q-Value for Reactions Producing Excited Nulceip. 83
5 Radioactivityp. 86
5.1 Overviewp. 86
5.2 Types of Radioactive Decayp. 88
5.3 Energetics of Radioactive Decayp. 88
5.3.1 Gamma Decayp. 88
5.3.2 Alpha-Particle Decayp. 89
5.3.3 Beta-Particle Decayp. 92
5.3.4 Positron Decayp. 93
5.3.5 Electron Capturep. 95
5.3.6 Neutron Decayp. 96
5.3.7 Proton Decayp. 96
5.3.8 Internal Conversionp. 97
5.3.9 Examples of Energy-Level Diagramsp. 98
5.4 Characteristics of Radioactive Decayp. 98
5.4.1 The Decay Constantp. 98
5.4.2 Exponential Decayp. 100
5.4.3 The Half-Lifep. 101
5.4.4 Decay Probability for a Finite Time Intervalp. 101
5.4.5 Mean Lifetimep. 102
5.4.6 Activityp. 102
5.4.7 Half-Life Measurementp. 103
5.4.8 Decay by Competing Processesp. 104
5.5 Decay Dynamicsp. 105
5.5.1 Decay with Productionp. 105
5.5.2 Three Component Decay Chainsp. 106
5.5.3 General Decay Chainp. 110
5.6 Naturally Occurring Radionuclidesp. 111
5.6.1 Cosmogenic Radionuclidesp. 111
5.6.2 Singly Occurring Primordial Radionuclidesp. 111
5.6.3 Decay Series of Primordial Originp. 112
5.6.4 Secular Equilibriump. 112
5.7 Radiodatingp. 115
5.7.1 Measuring the Decay of a Parentp. 116
5.7.2 Measuring the Buildup of a Stable Daughterp. 117
6 Binary Nuclear Reactionsp. 122
6.1 Types of Binary Reactionsp. 123
6.1.1 The Compound Nucleusp. 123
6.2 Kinematics of Binary Two-Product Nuclear Reactionsp. 124
6.2.1 Energy/Mass Conservationp. 125
6.2.2 Conservation of Energy and Linear Momentump. 125
6.3 Reaction Threshold Energyp. 128
6.3.1 Kinematic Thresholdp. 128
6.3.2 Coulomb Barrier Thresholdp. 129
6.3.3 Overall Threshold Energyp. 130
6.4 Applications of Binary Kinematicsp. 131
6.4.1 A Neutron Detection Reactionp. 131
6.4.2 A Neutron Production Reactionp. 131
6.4.3 Heavy Particle Scattering from an Electronp. 132
6.5 Reactions Involving Neutronsp. 133
6.5.1 Neutron Scatteringp. 133
6.5.2 Neutron Capture Reactionsp. 136
6.5.3 Fission Reactionsp. 136
6.6 Characteristics of the Fission Reactionp. 138
6.6.1 Fission Productsp. 140
6.6.2 Neutron Emission in Fissionp. 142
6.6.3 Energy Released in Fissionp. 146
6.7 Fusion Reactionsp. 149
6.7.1 Thermonuclear Fusionp. 149
6.7.2 Energy Production in Starsp. 152
6.7.3 Nucleogenesisp. 156
7 Radiation Interactions with Matterp. 161
7.1 Attenuation of Neutral Particle Beamsp. 162
7.1.1 The Linear Interaction Coefficientp. 163
7.1.2 Attenuation of Uncollided Radiationp. 164
7.1.3 Average Travel Distance Before an Interactionp. 164
7.1.4 Half-Thicknessp. 165
7.1.5 Scattered Radiationp. 166
7.1.6 Microscopic Cross Sectionsp. 166
7.2 Calculation of Radiation Interaction Ratesp. 168
7.2.1 Flux Densityp. 168
7.2.2 Reaction-Rate Densityp. 169
7.2.3 Generalization to Energy- and Time-Dependent Situationsp. 169
7.2.4 Radiation Fluencep. 170
7.2.5 Uncollided Flux Density from an Isotropic Point Sourcep. 171
7.3 Photon Interactionsp. 174
7.3.1 Photoelectric Effectp. 174
7.3.2 Compton Scatteringp. 175
7.3.3 Pair Productionp. 177
7.3.4 Photon Attenuation Coefficientsp. 178
7.4 Neutron Interactionsp. 178
7.4.1 Classification of Types of Interactionsp. 181
7.4.2 Fission Cross Sectionsp. 187
7.5 Attenuation of Charged Particlesp. 188
7.5.1 Interaction Mechanismsp. 188
7.5.2 Particle Rangep. 190
7.5.3 Stopping Powerp. 192
7.5.4 Estimating Charged-Particle Rangesp. 194
8 Detection and Measurement of Radiationp. 202
8.1 Gas-Filled Radiation Detectorsp. 203
8.1.1 Ionization Chambersp. 205
8.1.2 Proportional Countersp. 206
8.1.3 Geiger-Mueller Countersp. 207
8.2 Scintillation Detectorsp. 211
8.3 Semiconductor Ionizing-Radiation Detectorsp. 214
8.4 Personal Dosimetersp. 218
8.4.1 The Pocket Ion Chamberp. 218
8.4.2 The Film Badgep. 218
8.4.3 The Thermoluminescent Dosimeterp. 218
8.5 Measurement Theoryp. 219
8.5.1 Types of Measurement Uncertaintiesp. 219
8.5.2 Uncertainty Assignment Based Upon Counting Statisticsp. 219
8.5.3 Dead Timep. 220
8.5.4 Energy Resolutionp. 221
9 Radiation Doses and Hazard Assessmentp. 223
9.1 Historical Rootsp. 223
9.2 Dosimetric Quantitiesp. 225
9.2.1 Energy Imparted to the Mediump. 226
9.2.2 Absorbed Dosep. 227
9.2.3 Kermap. 227
9.2.4 Calculating Kerma and Absorbed Dosesp. 227
9.2.5 Exposurep. 230
9.2.6 Relative Biological Effectivenessp. 231
9.2.7 Dose Equivalentp. 232
9.2.8 Quality Factorp. 232
9.2.9 Effective Dose Equivalentp. 233
9.2.10 Effective Dosep. 234
9.3 Natural Exposures for Humansp. 235
9.4 Health Effects from Large Acute Dosesp. 237
9.4.1 Effects on Individual Cellsp. 237
9.4.2 Deterministic Effects in Organs and Tissuesp. 237
9.4.3 Potentially Lethal Exposure to Low-LET Radiationp. 240
9.5 Hereditary Effectsp. 242
9.5.1 Classification of Genetic Effectsp. 243
9.5.2 Summary of Risk Estimatesp. 244
9.5.3 Estimating Gonad Doses and Genetic Risksp. 246
9.6 Cancer Risks from Radiation Exposuresp. 246
9.6.1 Dose-Response Models for Cancerp. 247
9.6.2 Average Cancer Risks for Exposed Populationsp. 248
9.7 Radon and Lung Cancer Risksp. 250
9.7.1 Radon Activity Concentrationsp. 252
9.7.2 Lung Cancer Risksp. 253
9.8 Radiation Protection Standardsp. 255
9.8.1 Risk-Related Dose Limitsp. 255
9.8.2 The 1987 NCRP Exposure Limitsp. 256
10 Principles of Nuclear Reactorsp. 263
10.1 Neutron Moderationp. 264
10.2 Thermal-Neutron Properties of Fuelsp. 264
10.3 The Neutron Life Cycle in a Thermal Reactorp. 265
10.3.1 Quantification of the Neutron Cyclep. 266
10.3.2 Effective Multiplication Factorp. 270
10.4 Homogeneous and Heterogeneous Coresp. 273
10.5 Reflectorsp. 275
10.6 Reactor Kineticsp. 276
10.6.1 A Simple Reactor Kinetics Modelp. 276
10.6.2 Delayed Neutronsp. 277
10.6.3 Reactivity and Delta-kp. 278
10.6.4 Revised Simplified Reactor Kinetics Modelsp. 279
10.6.5 Power Transients Following a Reactivity Insertionp. 281
10.7 Reactivity Feedbackp. 285
10.7.1 Feedback Caused by Isotopic Changesp. 285
10.7.2 Feedback Caused by Temperature Changesp. 286
10.8 Fission Product Poisonsp. 288
10.8.1 Xenon Poisoningp. 288
10.8.2 Samarium Poisoningp. 292
10.9 Addendum 1: The Diffusion Equationp. 293
10.9.1 An Example Fixed-Source Problemp. 296
10.9.2 An Example Criticality Problemp. 297
10.9.3 More Detailed Neutron-Field Descriptionsp. 298
10.10 Addendum 2: Kinetic Model with Delayed Neutronsp. 299
10.11 Addendum 3: Solution for a Step Reactivity Insertionp. 301
11 Nuclear Powerp. 306
11.1 Nuclear Electric Powerp. 306
11.1.1 Electricity from Thermal Energyp. 306
11.1.2 Conversion Efficiencyp. 308
11.1.3 Some Typical Power Reactorsp. 308
11.1.4 Coolant Limitationsp. 311
11.2 Pressurized Water Reactorsp. 312
11.2.1 The Steam Cycle of a PWRp. 312
11.2.2 Major Components of a PWRp. 314
11.3 Boiling Water Reactorsp. 322
11.3.1 The Steam Cycle of a BWRp. 322
11.3.2 Major Components of a BWRp. 322
11.4 New Designs for Central-Station Powerp. 327
11.4.1 Certified Evolutionary Designsp. 328
11.4.2 Certified Passive Designp. 328
11.4.3 Other Evolutionary LWR Designsp. 328
11.4.4 Gas Reactor Technologyp. 329
11.5 The Nuclear Fuel Cyclep. 329
11.5.1 Uranium Requirements and Availabilityp. 331
11.5.2 Enrichment Techniquesp. 332
11.5.3 Radioactive Wastep. 334
11.5.4 Spent Fuelp. 335
11.6 Nuclear Propulsionp. 339
11.6.1 Naval Applicationsp. 339
11.6.2 Other Marine Applicationsp. 340
11.6.3 Nuclear Propulsion in Spacep. 341
12 Other Methods for Converting Nuclear Energy to Electricityp. 347
12.1 Thermoelectric Generatorsp. 347
12.1.1 Radionuclide Thermoelectric Generatorsp. 349
12.2 Thermionic Electrical Generatorsp. 352
12.2.1 Conversion Efficiencyp. 355
12.2.2 In-Pile Thermionic Generatorp. 357
12.3 AMTEC Conversionp. 358
12.4 Stirling Convertersp. 360
12.5 Direct Conversion of Nuclear Radiationp. 360
12.5.1 Types of Nuclear Radiation Conversion Devicesp. 362
12.5.2 Betavoltaic Batteriesp. 363
12.6 Radioisotopes for Thermal Power Sourcesp. 364
12.7 Space Reactorsp. 366
12.7.1 The U.S. Space Reactor Programp. 366
12.7.2 The Russian Space Reactor Programp. 368
13 Nuclear Technology in Industry and Researchp. 373
13.1 Production of Radioisotopesp. 373
13.2 Industrial and Research Uses of Radioisotopes and Radiationp. 374
13.3 Tracer Applicationsp. 376
13.3.1 Leak Detectionp. 376
13.3.2 Pipeline Interfacesp. 377
13.3.3 Flow Patternsp. 377
13.3.4 Flow Rate Measurementsp. 377
13.3.5 Labeled Reagentsp. 378
13.3.6 Tracer Dilutionp. 378
13.3.7 Wear Analysesp. 378
13.3.8 Mixing Timesp. 378
13.3.9 Residence Timesp. 379
13.3.10 Frequency Responsep. 379
13.3.11 Surface Temperature Measurementsp. 379
13.3.12 Radiodatingp. 379
13.4 Materials Affect Radiationp. 379
13.4.1 Radiographyp. 379
13.4.2 Thickness Gaugingp. 382
13.4.3 Density Gaugesp. 383
13.4.4 Level Gaugesp. 384
13.4.5 Radiation Absorptiometryp. 384
13.4.6 Oil-Well Loggingp. 385
13.4.7 Neutron Activation Analysisp. 385
13.4.8 Neutron Capture-Gamma Ray Analysisp. 386
13.4.9 Molecular Structure Determinationp. 386
13.4.10 Smoke Detectorsp. 387
13.5 Radiation Affects Materialsp. 387
13.5.1 Food Preservationp. 387
13.5.2 Sterilizationp. 388
13.5.3 Insect Controlp. 388
13.5.4 Polymer Modificationp. 388
13.5.5 Biological Mutation Studiesp. 388
13.5.6 Chemonuclear Processingp. 389
14 Medical Applications of Nuclear Technologyp. 392
14.1 Diagnostic Imagingp. 394
14.1.1 X-Ray Projection Imagingp. 394
14.1.2 Fluoroscopyp. 398
14.1.3 Mammographyp. 399
14.1.4 Bone Densitometryp. 399
14.1.5 X-Ray Computed Tomography (CT)p. 400
14.1.6 Single Photon Emission Computed Tomography (SPECT)p. 404
14.1.7 Positron Emission Tomography (PET)p. 407
14.1.8 Magnetic Resonance Imaging (MRI)p. 411
14.2 Radioimmunoassayp. 414
14.3 Diagnostic Radiotracersp. 416
14.4 Radioimmunoscintigraphyp. 417
14.5 Radiation Therapyp. 417
14.5.1 Early Applicationsp. 418
14.5.2 Teletherapyp. 418
14.5.3 Radionuclide Therapyp. 420
14.5.4 Clinical Brachytherapyp. 420
14.5.5 Boron Neutron Capture Therapyp. 421
Appendix A Fundamental Atomic Datap. 425
Appendix B Atomic Mass Tablep. 440
Appendix C Cross Sections and Related Datap. 458
Appendix D Decay Characteristics of Selected Radionuclidesp. 466
Indexp. 495