Cover image for Engines : an introduction
Title:
Engines : an introduction
Author:
Lumley, John L. (John Leask), 1930-
Publication Information:
Cambridge, UK ; New York : Cambridge University Press, [1999]

©1999
Physical Description:
xvii, 248 pages : illustrations ; 26 cm
Language:
English
ISBN:
9780521642774

9780521644891
Format :
Book

Available:*

Library
Call Number
Material Type
Home Location
Status
Central Library TJ755 .L94 1999 Adult Non-Fiction Non-Fiction Area
Searching...

On Order

Summary

Summary

The internal combustion engine that powers the modern automobile has changed very little from its initial design of some eighty years ago. Unlike many high tech advances, engine design still depends on an understanding of basic fluid mechanics and thermodynamics. This text offers a fresh approach to the study of engines, with an emphasis on design and on fluid dynamics. Professor Lumley, a renowned fluid dynamicist, provides a lucid explanation of how air and fuel are mixed, how they get into the engine, what happens to them there, and how they get out again. Particular attention is given to the complex issue of pollution. Examples are taken from the early days of engine design, as well as the latest designs, such as stratified charge gasoline direct injection engines. It is intended that the text be used in conjunction with the Stanford Engine Simulation Program (ESP). This user-friendly, interactive software tool answers a significant need not addressed by other texts on engines.


Author Notes

John L. Lumley is the Willis H. Carrier Professor of Engineering, Sibley School of Mechanical and Aerospace Engineering, Cornell University.


Table of Contents

Dedicationp. v
Prefacep. xi
Acknowledgmentsp. xvii
1 Thermodynamic Considerationsp. 1
1.1 The Ideal Otto Cyclep. 1
1.2 Efficienciesp. 5
1.2.1 Air Cycle Efficiencyp. 5
1.2.2 Real Gas Efficiencyp. 6
1.2.3 Indicated Efficiencyp. 6
1.3 A More Realistic Cyclep. 7
1.3.1 Time Lossp. 8
1.3.2 Heat Lossp. 9
1.3.3 Exhaust Blowdown Lossp. 9
1.3.4 Other Lossesp. 9
1.4 Knockingp. 12
1.5 Mean Effective Pressuresp. 15
1.5.1 A Word on Unitsp. 15
1.5.2 Brake Mean Effective Pressurep. 16
1.5.3 Indicated Mean Effective Pressurep. 17
1.6 Piston Speedp. 17
1.7 Specific Powerp. 18
1.8 Stroke/Bore Ratiop. 19
1.9 Power Equationp. 24
1.10 Influence on Designp. 26
1.11 Bmep Againp. 27
1.12 Some More Thermodynamicsp. 29
1.12.1 Turbulence and Flow in the Cylinderp. 29
1.12.2 Heat Transferp. 30
1.12.3 Chemical Reactionp. 30
1.12.4 STANJAN, ESPJAN and ESPp. 31
1.12.5 Heating Values and Enthalpyp. 31
1.13 Problemsp. 31
2 Breathing Exercisesp. 33
2.1 Introductionp. 33
2.2 Flow Through the Inlet Valvep. 33
2.3 The Discharge Coefficientp. 35
2.4 The Flow Coefficientp. 37
2.5 The Mach Index and Volumetric Efficiencyp. 38
2.6 Partial Throttlep. 41
2.7 The XK Enginep. 42
2.8 Combustion Chamber Shapep. 44
2.9 Valve Actuationp. 48
2.10 Valve Timingp. 54
2.11 Variable Valve Timingp. 59
2.12 Manifold Tuningp. 66
2.12.1 Introductionp. 66
2.12.2 Helmholtz Resonatorsp. 66
2.12.3 Organ Pipesp. 70
2.12.4 What Does ESP Do?p. 76
2.12.5 The Exhaust Systemp. 77
2.13 Folding the Manifoldp. 78
2.14 Supercharging/Turbochargingp. 80
2.14.1 Introductionp. 80
2.14.2 Characteristics of Super/Turbochargersp. 82
2.14.3 Thermodynamic Considerationsp. 85
2.14.4 Turbinesp. 87
2.14.5 Knockp. 87
2.15 Intercoolersp. 89
2.16 Problemsp. 92
3 Engine Coolingp. 95
3.1 Introductionp. 95
3.2 Valve Seat Recessionp. 97
3.3 Heat Transfer in the Cylinderp. 100
3.3.1 Conduction in the Solidp. 100
3.3.2 Heat Transfer in the Gasp. 101
3.3.3 Variation of Part Temperaturep. 103
3.3.4 Turbulent Velocitiesp. 104
3.3.5 Conclusions Regarding Temperaturesp. 106
3.4 Overall Heat Transferp. 106
3.5 The Exhaust Valvep. 111
3.6 Ceramic Coatingsp. 114
3.7 Problemsp. 116
4 Engine Friction Lossesp. 118
4.1 Lubricationp. 118
4.2 Total Engine Frictionp. 119
4.3 Attribution of Friction Lossesp. 122
4.4 Hydrodynamic Lubricationp. 125
4.5 Mechanical Efficiencyp. 127
4.6 Inertial Loadingp. 129
4.7 The Piston Ringp. 130
4.8 Problemsp. 132
5 Flow in the Cylinderp. 134
5.1 Introductionp. 134
5.2 Phases of the Flowp. 136
5.3 Averagingp. 137
5.4 A Word About Turbulencep. 142
5.5 Turbulence Induced by the Inlet Jetp. 145
5.6 Inducing Swirl and Tumblep. 148
5.6.1 Lift Strategiesp. 153
5.6.2 Port and Valve Configurationsp. 153
5.7 Effect of Compressionp. 155
5.7.1 Effect on Swirl and Tumblep. 155
5.7.2 Effect on Turbulencep. 158
5.8 Charge Stratificationp. 161
5.9 Squishp. 163
5.10 Pollutionp. 163
5.10.1 Atmospheric Chemistryp. 168
5.10.2 Chemistry in the Cylinderp. 168
5.11 Lean Burnp. 170
5.11.1 Honda VTEC-E 1.5 L SOHC 16 Valve Four-in-Linep. 172
5.11.2 Toyota Carina 4A-ELU 1.6 L DOHC 16 Valve Four-in-Linep. 172
5.11.3 Mitsubishi Mirage 4G15MPI-MVV 1.5 L SOHC 12 Valve Four-in-Linep. 172
5.11.4 Mazda Surround Combustion 2.0 L DOHC 16 Valve Four-in-Linep. 173
5.12 Gasoline Direct-Injection Enginesp. 174
5.12.1 Mitsubishi GDI Enginep. 181
5.12.2 Toyota GDI Enginep. 181
5.13 Problemsp. 181
6 Overall Engine Performancep. 185
6.1 Introductionp. 185
6.2 Carburetion vs. Injectionp. 185
6.2.1 Fuel Injectionp. 186
6.2.2 Mixing and Evaporationp. 186
6.2.3 Droplet Sizep. 187
6.2.4 Puddlingp. 188
6.3 Transient Responsep. 189
6.4 Brake Specific Fuel Consumptionp. 189
6.4.1 Power and Torque Curvesp. 191
6.5 Problemsp. 193
7 Design Considerationsp. 194
7.1 Introductionp. 194
7.2 Similarity Considerationsp. 194
7.2.1 Inertial Stressp. 196
7.2.2 Valve Speedp. 197
7.2.3 The MIT Enginesp. 199
7.3 Balance and Vibrationp. 201
7.4 The In-Line Fourp. 203
7.4.1 The Forcesp. 203
7.4.2 Momentsp. 204
7.4.3 Balance Shaftsp. 205
7.5 The Five Cylinder In-Linep. 205
7.6 Problemsp. 208
8 The Stanford Espp. 210
8.1 Introductionp. 210
8.2 Outline of the Modelp. 211
8.3 Model Detailsp. 213
8.3.1 Gas Propertiesp. 213
8.3.2 Analysis of the Compression Stagesp. 213
8.3.3 Ignition Analysisp. 214
8.3.4 Analysis of the Burn Stagep. 215
8.3.5 Analysis of the Expansion Stagep. 218
8.3.6 Analysis of the Gas Exchange Stagep. 218
8.3.7 Turbulence Modelp. 221
8.4 ESP Manifold Analysisp. 222
8.4.1 Overviewp. 222
8.4.2 Unsteady One-Dimensional Compressible Flowp. 223
8.4.3 The Method of Characteristicsp. 226
8.4.4 Inlet Manifold Modelp. 232
8.4.5 Exhaust Manifold Modelp. 233
8.4.6 ESP Calculationsp. 234
8.5 Program Statusp. 235
Bibliographyp. 237
Indexp. 243

Google Preview