Cover image for The Cambridge encyclopedia of meteorites
The Cambridge encyclopedia of meteorites
Norton, O. Richard.
Personal Author:
Publication Information:
Cambridge, UK ; New York, NY : Cambridge University Press, 2002.
Physical Description:
xx, 354 pages : illustrations (some color), maps ; 29 cm
Subject Term:
Electronic Access:
Table of contents
Format :


Call Number
Material Type
Home Location
Item Holds
QB755 .N65 2002 Adult Non-Fiction Non-Fiction Area-Oversize

On Order



In recent years, meteorites have caught the imagination of scientist and collector alike. An army of people are now actively searching for them in the hot and cold deserts of Earth. Fascinating extraterrestrial rocks in meteorites are our only contact with materials from beyond the Earth-Moon system. Using well known petrologic techniques, O. Richard Norton reveals in vivid color their extraordinary external and internal structures and taking readers to the atomic level, describes the environment within the solar nebula that existed before the planets accreted. Extensively illustrated, this volume is a valuable guide to assist searchers in the field in recognizing the many classes of meteorites and it is a superb reference source for students, teachers and scientists who wish to probe deeper these amazing rocks from space. O. Richard Norton is a contributing editor for Meteorite magazine and the author of The Planetarium and Atmospherium and Rocks from Space (Mountain Press, 1998). For the last 40 years, he has taught astronomy and space sciences at various US institutions.

Reviews 1

Choice Review

Engagingly written and profusely illustrated with photographs, micrographs (nearly all in color--unusual for the subject and often quite beautiful), spacecraft imagery, and paintings, this encyclopedia presents an extensive tour of the classification, structure, history, and origins of meteorites. Norton (previously a director at numerous planetariums and author of the popular Rocks from Space, CH, Feb'95) presents a wealth of information topically rather than alphabetically, although eight appendixes, a glossary, a general index, and a meteorite index help those needing to find information on a specific term or body. Designed to bridge the gap between high-level professionals and general readers, this work liberally supplies tables, charts, diagrams, and graphs, and each chapter includes references. With meteorites becoming more popular in both scientific research and personal collecting, Norton's encyclopedia provides more depth than the less technical but similarly beautiful Meteorites: A Journey through Space and Time, by Alex Bevan and John de Laeter (2002), and is recommended for any library with science collections, especially in geology and astronomy. C. S. Dunham Fairfield University

Table of Contents

Prefacep. xv
Forewordp. xix
1 Cosmic dust: interplanetary dust particlesp. 1
The smallest meteoroids--interplanetary dust particles (IDPs)p. 1
The zodiacal lightp. 2
A solar connectionp. 3
Lifetime of interplanetary dust particlesp. 3
Density of interplanetary dust particlesp. 4
Comets as sources of interplanetary dust particlesp. 4
Atmospheric collection of interplanetary dust particlesp. 5
Collection of deep sea interplanetary dust particlesp. 8
Impacts close to home--a practical matterp. 8
Meteorsp. 11
Sporadic meteorsp. 11
Origin of sporadic meteorsp. 11
Shower meteorsp. 12
The Leonid meteor stormp. 13
Harvesting interplanetary dust particles in the space environmentp. 18
To touch a starp. 19
Celestial diamondsp. 19
Celestial silicon carbidep. 20
Interstellar graphitep. 21
PAHs in graphitep. 21
A final wordp. 24
Referencesp. 25
2 The fall of meteoritesp. 27
Orbits of meteoroidsp. 28
The fireball networksp. 28
Characteristics of a meteoroid's atmospheric passagep. 32
The true trajectoryp. 32
Height and angle of descentp. 32
Meteoroid velocityp. 33
Atmospheric dragp. 33
Light phenomenap. 34
Sound phenomenap. 36
Electrophonic soundsp. 37
Meteoroids to meteorites: a lesson in survivalp. 39
Ablationp. 39
The distribution ellipsep. 40
"Fossil" strewn fieldsp. 42
The temperature myth--hot or cold?p. 42
The final resting placep. 44
Referencesp. 46
3 External morphology of meteoritesp. 47
Some general characteristicsp. 48
Falls and findsp. 48
Densityp. 48
Sizep. 49
Meteorite shapesp. 50
Oriented meteoritesp. 52
Fusion crustp. 53
Weathering of meteoritesp. 58
Mechanical weatheringp. 58
Chemical weatheringp. 58
The myth of lawrencite in iron meteoritesp. 61
A weathering scalep. 63
Terrestrial lifetimes of meteoritesp. 65
"Fossil" meteoritesp. 67
The Brunflo "paleo" fossilsp. 67
The oldest "paleo" iron?p. 67
A K--T boundary meteorite?p. 67
Referencesp. 69
4 Classification of meteorites: a historical viewpointp. 71
The early yearsp. 72
The Rose--Tschermak--Brezina classificationp. 73
The Prior classificationp. 75
Referencesp. 77
5 Primitive meteorites: the chondritesp. 79
Petrologic--chemical classification of the chondritesp. 81
Cosmic abundancesp. 82
Chemical classification of the chondritesp. 83
The Van Schmus--Wood criteria for the petrologic--chemical classification of chondritesp. 86
1. Chondrule texturep. 86
2. Matrix texturep. 86
3. Homogeneity of olivine and pyroxene compositionsp. 89
4. Structural states of low-calcium pyroxenep. 90
5. Degree of development of secondary feldsparp. 90
6. Igneous glass in chondrulesp. 90
7. Metallic minerals (maximum weight percent nickel in FeNi)p. 90
8. Sulfide minerals (average nickel in FeS)p. 90
9. Weight percent carbonp. 90
10. Water contentp. 91
Shock metamorphism and shock stage classificationp. 93
The Stoffler--Keil--Scott shock classification systemp. 93
S1 unshockedp. 93
S2 very weakly shockedp. 93
S3 weakly shockedp. 93
S4 moderately shockedp. 93
S5 strongly shockedp. 95
S6 very strongly shockedp. 95
Brecciated chondritesp. 96
Regolith brecciasp. 96
Impact-melt brecciap. 98
Referencesp. 100
6 Chondrites: a closer lookp. 101
Chondrite density and porosityp. 103
Chondrulesp. 106
Chondrule sizes and abundancesp. 106
Chondrule textures and compositionsp. 106
Porphyritic chondrulesp. 108
Granular olivine--pyroxene chondrules (GOP)p. 110
Nonporphyritic or droplet chondrulesp. 110
The other chondritesp. 115
Enstatite chondrites (E)p. 115
"Rumuruti" chondrites (R)p. 116
Summaryp. 117
Referencesp. 118
7 Primitive meteorites: the carbonaceous chondritesp. 119
Ordinary vs carbonaceous chondritesp. 120
Carbonaceous chondrite groupsp. 121
CI chondrites (C1)p. 121
A new CI chondrite?p. 122
CM chondritesp. 123
Are CI and CM chondrites related to comets?p. 125
CV chondritesp. 128
Matrixp. 128
Chondrulesp. 129
Olivine aggregates, dark inclusionsp. 131
Calcium--aluminum inclusions (CAIs)p. 131
CO chondritesp. 135
CK chondritesp. 136
CR chondritesp. 138
CH chondritesp. 139
Organic carbonp. 140
Summaryp. 142
Referencesp. 143
8 Differentiated meteorites: the achondritesp. 145
Major characteristics of differentiated meteoritesp. 146
Differentiationp. 147
Fractional crystallization and the igneous processp. 148
Asteroidal achondritesp. 151
The HED associationp. 151
Eucritesp. 151
Diogenitesp. 153
Howarditesp. 156
The mesosiderite connectionp. 157
Aubrites--the enstatite achondritesp. 159
Ureilitesp. 161
Angritesp. 162
Brachinitesp. 163
Primitive achondritesp. 165
Acapulcoites and lodranitesp. 165
Winonaitesp. 165
Martian meteorites--the SNC groupp. 166
Shergottitesp. 166
Nakhlitesp. 167
Chassignitesp. 168
Origin of the SNC meteoritesp. 170
The saga of martian meteorite ALH 84001p. 172
Lunar meteorites--lunaitesp. 175
History's lessonp. 176
Baldwin's Moonp. 177
A history of discoveryp. 177
Anorthositic regolith brecciasp. 178
Mare basaltsp. 179
Referencesp. 182
9 Differentiated meteorites: irons and stony-ironsp. 183
Mineralogy of meteoritic iron--nickelp. 184
Crystal structure of meteoritic iron--nickel mineralsp. 185
Iron--nickel stability phase diagramp. 185
Formation of the Widmanstatten structurep. 187
Classification of iron meteoritesp. 190
Structural classification of iron meteoritesp. 190
Hexahedrites (H)p. 190
Octahedrites (O)p. 190
Ataxites (D)p. 191
Anomalous ironsp. 191
Chemical classification of iron meteoritesp. 191
Chemical vs structural classificationp. 197
Silicate inclusions in iron meteoritesp. 199
Cooling the corep. 201
Stony-irons: the pallasitesp. 203
Texturep. 203
Composition and classificationp. 203
Formation of pallasitesp. 205
Metallic inclusions in iron meteoritesp. 207
Swathing kamacitep. 207
Troilitep. 207
Schreibersitep. 208
Cohenitep. 209
Graphitep. 209
Referencesp. 212
10 Meteorites and the early Solar Systemp. 213
Radioisotopes--some basicsp. 215
Decay constant and half-lifep. 216
Rubidium/strontium methodp. 217
Types of meteorite agesp. 218
In the beginningp. 220
The solar nebulap. 221
The first-condensed refractory mineralsp. 224
Formation of the first chondrulesp. 226
Multiple melting and recycling of chondrules?p. 227
The age of the Solar Systemp. 234
Aluminum-26 and the age of chondrules and CAIsp. 234
Absolute age of the Solar Systemp. 236
Impact metamorphismp. 236
Cosmic-ray exposure agesp. 237
Terrestrial agep. 238
Referencesp. 239
11 Asteroid parent bodiesp. 241
The asteroid beltp. 242
Titius--Bode Rulep. 242
Discovery of the first asteroidsp. 242
Modern discoveriesp. 243
Numbering and naming asteroidsp. 243
Main belt asteroidsp. 246
Trojan asteroidsp. 247
Near-Earth and Earth-crossing asteroidsp. 247
Asteroids as parent bodies of meteoritesp. 249
Meteoroid orbits and the asteroid beltp. 249
Classifying asteroids through infrared reflectance spectrophotometryp. 249
Distribution of asteroid typesp. 250
Matching meteorites with parent asteroidsp. 252
C-type carbonaceous asteroidsp. 252
S-type asteroids and ordinary chondritesp. 252
M-type metal asteroidsp. 254
Physical characteristics of asteroidsp. 255
Space weatheringp. 256
Onion shell vs rubble pile asteroid modelsp. 256
Asteroid 4 Vesta and HED meteoritesp. 258
Where are the mantle rocks?p. 259
Close encounters: flyby of asteroids 951 Gaspra and 243 Idap. 260
Finale: NEAR encounter with 433 Erosp. 262
Flyby of 253 Mathildep. 263
NEAR-Shoemaker orbits 433 Erosp. 263
The final approachp. 266
Referencesp. 269
12 Terrestrial impact cratersp. 271
An impact crater misjudgedp. 273
Impact cratering in the Solar Systemp. 276
Mechanism of impact crateringp. 279
Stage 1 contact/compressionp. 279
Stage 2 excavationp. 279
Stage 3 modificationp. 281
Effects of changing parameters on crater sizep. 281
Morphology of impact cratersp. 285
Simple cratersp. 285
Complex cratersp. 285
Criteria for the definitive recognition of terrestrial impact structuresp. 291
Surface structuresp. 291
Remnants of the meteoritep. 291
Shatter conesp. 292
Impactitesp. 293
Coesite and stishovitep. 296
Shocked mineralsp. 297
Catastrophic impacts on Earthp. 300
The Tunguska eventp. 300
When catastrophism had its dayp. 301
The Chicxulub craterp. 304
Asteroid or comet?p. 305
The Permian--Triassic extinctionp. 305
Referencesp. 306
Appendix A Classification of meteorites (A.E. Rubin, 2000)p. 307
Appendix B Formation ages of selected meteoritesp. 309
Appendix C Minerals in meteoritesp. 311
Appendix D Preparing and etching iron meteoritesp. 315
Appendix E Testing a meteorite for nickelp. 319
Appendix F Meteorite museum collections and selected research facilitiesp. 321
Appendix G Known terrestrial impact cratersp. 325
Appendix H Summary of meteorites by classification (compiled by Bernd Pauli, June 2001)p. 331
Glossaryp. 341
General indexp. 349
Meteorite indexp. 353