Cover image for Digital telephony
Title:
Digital telephony
Author:
Bellamy, John, 1941-
Personal Author:
Edition:
Third edition.
Publication Information:
New York : Wiley, [2000]

©2000
Physical Description:
xxv, 643 pages : illustrations ; 24 cm.
General Note:
"A Wiley-Interscience publication."
Language:
English
ISBN:
9780471345718
Format :
Book

Available:*

Library
Call Number
Material Type
Home Location
Status
Item Holds
Searching...
TK5103.7 .B44 2000 3RD. EDITION Adult Non-Fiction Central Closed Stacks-Non circulating
Searching...

On Order

Summary

Summary

From the reviews of the Second Edition . "The book stresses how systems operate and the rationale behind their design, rather than presenting rigorous analytical formulations . [It provides] the practicality and breadth essential to mastering the concepts of modern communications systems." -Telecommunication Journal In this expanded new edition of his bestselling book, telephony expert John Bellamy continues to provide telecommunications engineers with practical, comprehensive coverage of all aspects of digital telephone systems, while addressing the rapid changes the field has seen in recent years. Bellamy discusses the near-complete conversion to digital technology in telephone networks worldwide, examines both existing and emerging technologies, and explores the intricacies of carrying voice over data networks as well as the use of telephone networks for carrying data for Internet access. He emphasizes system design, implementation, and application, but also correlates the practice to communications theory. With 30 percent new material, Digital Telephony, Third Edition features:
∗ Clear explanations on how to overcome problems associated with the replacement of old analog technology with new digital technology
∗ A new chapter on digital mobile telephone technology
∗ New material on how, data networks support voice communication
∗ A new chapter on digital subscriber access technologies
∗ More than 300 graphs illustrating concepts
∗ Examples from the U.S. network as well as ITU public telephone networks

∗An Instructor′s Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.


Author Notes

John C. Bellamy, PhD, is a consultant based in Texas and a senior member of the IEEE.


Table of Contents

Prefacep. xvii
Acknowledgmentp. xix
Acronymsp. xxi
Chapter 1 Background and Terminologyp. 1
1.1 Telecommunications Standard Organizationsp. 3
1.2 The Analog Network Hierarchyp. 5
1.2.1 Bell System Hierarchyp. 6
1.2.2 Postdivestiture U.S. Networkp. 10
1.2.3 Switching Systemsp. 12
1.2.4 Transmission Systemsp. 18
1.2.5 Pair-Gain Systemsp. 24
1.2.6 FDM Multiplexing and Modulationp. 26
1.2.7 Wideband Transmission Mediap. 28
1.2.8 Transmission Impairmentsp. 33
1.2.9 Power Levelsp. 41
1.2.10 Signalingp. 42
1.2.11 Analog Interfacesp. 46
1.2.12 The Intelligent Networkp. 49
1.2.13 Dynamic Nonhierarchical Routingp. 51
1.2.14 Cellular Radio Telephone Systemp. 52
1.2.15 Voiceband Data Transmissionp. 54
1.3 The Introduction of Digitsp. 56
1.3.1 Voice Digitizationp. 56
1.3.2 Time Division Multiplexingp. 58
1.3.3 Data under Voicep. 63
1.3.4 Digital Microwave Radiop. 64
1.3.5 Fiber Optic Transmissionp. 65
1.3.6 Digital Switchingp. 65
1.3.7 Digital Network Evolutionp. 67
Referencesp. 69
Problemsp. 71
Chapter 2 Why Digital?p. 73
2.1 Advantages of Digital Voice Networksp. 73
2.1.1 Ease of Multiplexingp. 73
2.1.2 Ease of Signalingp. 74
2.1.3 Use of Modern Technologyp. 75
2.1.4 Integration of Transmission and Switchingp. 77
2.1.5 Signal Regenerationp. 78
2.1.6 Performance Monitorabilityp. 79
2.1.7 Accommodation of Other Servicesp. 80
2.1.8 Operability at Low Signal-to-Noise/Interference Ratiosp. 80
2.1.9 Ease of Encryptionp. 81
2.2 Digital Signal Processingp. 81
2.2.1 DSP Applicationsp. 82
2.3 Disadvantages of Digital Voice Networksp. 84
2.3.1 Increased Bandwidthp. 84
2.3.2 Need for Time Synchronizationp. 85
2.3.3 Topologically Restricted Multiplexingp. 85
2.3.4 Need for Conference/Extension Bridgesp. 86
2.3.5 Incompatibilities with Analog Facilitiesp. 87
Referencesp. 88
Chapter 3 Voice Digitizationp. 91
3.1 Pulse Amplitude Modulationp. 93
3.1.1 Nyquist Sampling Ratep. 94
3.1.2 Foldover Distortionp. 95
3.2 Pulse Code Modulationp. 98
3.2.1 Quantization Noisep. 99
3.2.2 Idle Channel Noisep. 102
3.2.3 Uniformly Encoded PCMp. 103
3.2.4 Compandingp. 106
3.2.5 Easily Digitally Linearizable Codingp. 108
3.2.6 Syllabic Compandingp. 116
3.2.7 Adaptive Gain Encodingp. 119
3.3 Speech Redundanciesp. 121
3.3.1 Nonuniform Amplitude Distributionsp. 122
3.3.2 Sample-to-Sample Correlationp. 122
3.3.3 Cycle-to-Cycle Correlationsp. 122
3.3.4 Pitch-Interval-to-Pitch-Interval Correlationsp. 123
3.3.5 Inactivity Factorsp. 124
3.3.6 Nonuniform Long-Term Spectral Densitiesp. 124
3.3.7 Short-Term Spectral Densitiesp. 127
3.4 Differential Pulse Code Modulationp. 127
3.4.1 DPCM Implementationsp. 129
3.4.2 Higher Order Predictionp. 131
3.4.3 Adaptive Differential PCMp. 131
3.5 Delta Modulationp. 133
3.5.1 Slope Overloadp. 134
3.6 Adaptive Predictive Codingp. 136
3.7 Subband Codingp. 138
3.8 Vocodersp. 141
3.8.1 Channel Vocoderp. 142
3.8.2 Formant Vocoderp. 144
3.8.3 Linear Predictive Codingp. 144
3.8.4 Enhanced-Excitation Linear Predictive Codingp. 147
3.9 Encoder/Decoder Selection Considerationsp. 151
3.9.1 Voice Qualityp. 151
3.9.2 Transparency for Nonvoice Signalsp. 152
3.9.3 Tolerance of Transmission Errorsp. 153
3.9.4 Delayp. 154
3.10 ITU-T Coding Standardsp. 154
Referencesp. 155
Problemsp. 158
Chapter 4 Digital Transmission and Multiplexingp. 161
4.1 Pulse Transmissionp. 162
4.1.1 Intersymbol Interferencep. 164
4.1.2 Timing Inaccuraciesp. 164
4.1.3 Insufficient Bandwidthp. 164
4.1.4 Amplitude Distortionp. 165
4.1.5 Phase Distortionp. 165
4.2 Asynchronous versus Synchronous Transmissionp. 165
4.2.1 Asynchronous Transmissionp. 166
4.2.2 Synchronous Transmissionp. 167
4.3 Line Codingp. 171
4.3.1 Level Encodingp. 171
4.3.2 Bipolar Codingp. 173
4.3.3 Binary N-Zero Substitutionp. 176
4.3.4 Pair Selected Ternaryp. 179
4.3.5 Ternary Codingp. 180
4.3.6 Digital Biphasep. 181
4.3.7 Differential Encodingp. 183
4.3.8 Coded Mark Inversionp. 183
4.3.9 Multilevel Signalingp. 184
4.3.10 Partial-Response Signalingp. 185
4.4 Error Performancep. 189
4.4.1 Signal Detectionp. 190
4.4.2 Noise Powerp. 190
4.4.3 Error Probabilitiesp. 191
4.5 Performance Monitoringp. 198
4.5.1 Redundancy Checksp. 198
4.5.2 Signal Quality Measurementsp. 201
4.5.3 Framing Channel Errorsp. 203
4.5.4 Performance Objectivesp. 203
4.5.5 Forward Error Correctionp. 204
4.6 Time Division Multiplexingp. 207
4.6.1 Bit Interleaving versus Word Interleavingp. 208
4.6.2 Framingp. 209
4.6.3 DS1 Extended Superframep. 215
4.7 Time Division Multiplex Loops and Ringsp. 216
Referencesp. 219
Problemsp. 221
Chapter 5 Digital Switchingp. 225
5.1 Switching Functionsp. 226
5.2 Space Division Switchingp. 227
5.2.1 Multiple-Stage Switchingp. 230
5.2.2 Blocking Probabilities: Lee Graphsp. 234
5.2.3 Blocking Probabilities: Jacobaeusp. 238
5.2.4 Folded Four-Wire Switchesp. 242
5.2.5 Pathfindingp. 243
5.2.6 Switch Matrix Controlp. 244
5.3 Time Division Switchingp. 246
5.3.1 Analog Time Division Switchingp. 246
5.3.2 Digital Time Division Switchingp. 247
5.4 Two-Dimensional Switchingp. 251
5.4.1 STS Switchingp. 255
5.4.2 TST Switchingp. 257
5.4.3 No. 4 ESS Toll Switchp. 262
5.4.4 System 75 Digital PBXp. 264
5.5 Digital Cross-Connect Systemsp. 265
5.5.1 Consolidation and Segregationp. 267
5.5.2 DCS Hierarchyp. 268
5.5.3 Integrated Cross-Connect Equipmentp. 269
5.6 Digital Switching in an Analog Environmentp. 270
5.6.1 Zero-Loss Switchingp. 270
5.6.2 Borschtp. 272
5.6.3 Conferencingp. 272
Referencesp. 273
Problemsp. 274
Chapter 6 Digital Modulation and Radio Systemsp. 277
6.1 Digital Modulationp. 279
6.1.1 Amplitude Modulationp. 280
6.1.2 Frequency Shift Keyingp. 284
6.1.3 Phase Shift Keyingp. 288
6.1.4 Quadrature Amplitude Modulationp. 301
6.1.5 Carrierless Amplitude and Phase Modulationp. 309
6.1.6 Partial-Response QAMp. 310
6.1.7 Trellis-Coded Modulationp. 311
6.1.8 Multicarrier Modulationp. 315
6.2 Filter Partitioningp. 317
6.2.1 Adjacent-Channel Interferencep. 317
6.2.2 Optimum Partitioningp. 318
6.3 Emission Specificationsp. 320
6.4 Radio System Designp. 322
6.4.1 Fade Marginsp. 322
6.4.2 System Gainp. 323
6.4.3 Frequency Diversityp. 326
6.4.4 Space Diversityp. 327
6.4.5 Angle Diversityp. 327
6.4.6 Adaptive Equalizationp. 328
6.4.7 Route Designp. 328
Referencesp. 329
Problemsp. 332
Chapter 7 Network Synchronization Control and Managementp. 335
7.1 Timingp. 336
7.1.1 Timing Recovery: Phase-Locked Loopp. 336
7.1.2 Clock Instabilityp. 337
7.1.3 Elastic Storesp. 339
7.1.4 Jitter Measurementsp. 342
7.1.5 Systematic Jitterp. 345
7.2 Timing Inaccuraciesp. 346
7.2.1 Slipsp. 346
7.2.2 Asynchronous Multiplexingp. 351
7.2.3 Waiting Time Jitterp. 359
7.3 Network Synchronizationp. 361
7.3.1 Plesiochronousp. 362
7.3.2 Networkwide Pulse Stuffingp. 363
7.3.3 Mutual Synchronizationp. 364
7.3.4 Network Masterp. 364
7.3.5 Master-Slave Synchronizationp. 365
7.3.6 Packetizationp. 366
7.3.7 Network Timing Performance Measurementsp. 366
7.4 U.S. Network Synchronizationp. 370
7.4.1 Synchronization Regionsp. 370
7.4.2 Primary Reference Sourcesp. 372
7.4.3 1996 ATandT Synchronization Architecturep. 373
7.5 Network Controlp. 373
7.5.1 Hierarchical Synchronization Processesp. 374
7.6 Network Managementp. 376
7.6.1 Routing Controlp. 376
7.6.2 Flow Controlp. 377
Referencesp. 380
Problemsp. 382
Chapter 8 Fiber Optic Transmission Systemsp. 383
8.1 Fiber Optic Transmission System Elementsp. 386
8.1.1 Optical Fiber Fundamentalsp. 387
8.1.2 Electrical-to-Optical Transducersp. 390
8.1.3 Optical-to-Electrical Transducersp. 393
8.2 Line Codes for Fiber Optic Transmissionp. 395
8.2.1 mBnB Line Codesp. 396
8.2.2 Bit Insertion Codesp. 399
8.3 Wavelength Division Multiplexingp. 401
8.4 Fiber System Designp. 403
8.4.1 Fiber Connectors and Splicesp. 404
8.4.2 Protection Switchingp. 404
8.4.3 System Gainp. 405
8.5 SONET/SDHp. 406
8.5.1 SONET Multiplexing Overviewp. 408
8.5.2 SONET Frame Formatsp. 409
8.5.3 SONET Operations, Administration, and Maintenancep. 411
8.5.4 Payload Framing and Frequency Justificationp. 414
8.5.5 Virtual Tributariesp. 417
8.5.6 DS3 Payload Mappingp. 422
8.5.7 E4 Payload Mappingp. 423
8.5.8 SONET Optical Standardsp. 425
8.5.9 SONET Networksp. 426
8.6 SONET Ringsp. 429
8.6.1 Unidirectional Path-Switched Ringp. 429
8.6.2 Bidirectional Line-Switched Ringp. 431
Referencesp. 433
Problemsp. 434
Chapter 9 Digital Mobile Telephonyp. 437
9.1 North American Digital Cellularp. 437
9.1.1 D-AMPS Transmission Formatp. 438
9.1.2 D-AMPS Speech Codingp. 439
9.1.3 D-AMPS Control Channelp. 439
9.1.4 D-AMPS Error Controlp. 440
9.2 Global System for Mobile Communicationsp. 441
9.2.1 GSM Channel Structurep. 441
9.2.2 GSM Speech Codingp. 443
9.2.3 GSM Channel Coding and Modulationp. 443
9.2.4 GSM Mobile Stationp. 443
9.2.5 GSM Frequency Hoppingp. 444
9.2.6 GSM Short Message Servicep. 444
9.3 Code Division Multiple-Access Cellularp. 444
9.3.1 CDMA Channel Establishmentp. 445
9.3.2 CDMA Multipath Tolerancep. 448
9.3.3 CDMA Power Controlp. 449
9.3.4 CDMA Soft Handoffp. 449
9.4 Personal Communication Systemp. 450
9.5 Voice Privacy and Authenticationp. 450
9.6 Iridiump. 451
9.7 Trunked Radiop. 452
9.8 Cellular Digital Packet Datap. 453
Referencesp. 453
Problemsp. 454
Chapter 10 Data and Asynchronous Transfer Mode Networksp. 455
10.1 Message Switchingp. 456
10.2 Packet Switchingp. 458
10.2.1 Packet Formatsp. 460
10.2.2 Statistical Multiplexingp. 461
10.2.3 Routing Controlp. 463
10.2.4 Flow Controlp. 466
10.2.5 X.25p. 469
10.2.6 Frame Relayp. 471
10.2.7 TCP/IPp. 473
10.3 Asynchronous Transfer Mode Networksp. 474
10.3.1 ATM Cellsp. 474
10.3.2 ATM Service Categoriesp. 474
10.3.3 ATM Connectionsp. 477
10.3.4 ATM Switchingp. 477
10.3.5 ATM Applicationsp. 484
10.4 Internet Protocol Transportp. 490
Referencesp. 492
Problemsp. 494
Chapter 11 Digital Subscriber Accessp. 495
11.1 Integrated Services Digital Networkp. 496
11.1.1 ISDN Basic Rate Access Architecturep. 497
11.1.2 S/T Interfacep. 499
11.1.3 ISDN U Interfacep. 501
11.1.4 ISDN D Channel Protocolp. 503
11.2 High-Data-Rate Digital Subscriber Loopsp. 503
11.2.1 Asymmetric Digital Subscriber Linep. 503
11.2.2 VDSLp. 507
11.3 Digital Loop Carrier Systemsp. 507
11.3.1 Universal Digital Loop Carrier Systemsp. 507
11.3.2 Integrated Digital Loop Carrier Systemsp. 508
11.3.3 Next-Generation Digital Loop Carrier Systemsp. 509
11.4 Fiber in the Loopp. 510
11.5 Hybrid Fiber Coax Systemsp. 511
11.6 Voiceband Modemsp. 512
11.6.1 PCM Modemsp. 513
11.7 Local Microwave Distribution Servicep. 515
11.8 Digital Satellite Servicesp. 516
Referencesp. 516
Problemsp. 517
Chapter 12 Traffic Analysisp. 519
12.1 Traffic Characterizationp. 520
12.1.1 Arrival Distributionsp. 524
12.1.2 Holding Time Distributionsp. 527
12.2 Loss Systemsp. 530
12.2.1 Lost Calls Clearedp. 531
12.2.2 Lost Calls Returningp. 536
12.2.3 Lost Calls Heldp. 539
12.2.4 Lost Calls Cleared--Finite Sourcesp. 541
12.2.5 Lost Calls Held--Finite Sourcesp. 544
12.3 Network Blocking Probabilitiesp. 547
12.3.1 End-to-End Blocking Probabilitiesp. 548
12.3.2 Overflow Trafficp. 551
12.4 Delay Systemsp. 552
12.4.1 Exponential Service Timesp. 555
12.4.2 Constant Service Timesp. 558
12.4.3 Finite Queuesp. 561
12.4.4 Tandem Queuesp. 566
Referencesp. 567
Problemsp. 568
Appendix A Derivatization of Equationsp. 573
Appendix B Encoding/Decoding Algorithms for Segmented PCMp. 579
Appendix C Analytic Fundamentals of Digital Transmissionp. 587
Appendix D Traffic Tablesp. 607
Glossaryp. 613
Answers to Selected Problemsp. 631
Indexp. 635